

Incompatible BLOCK:
Wonders Accompanied Interface

 Abstract
For interface design, improving user curiosity is
important, as is intuitiveness and intelligibility. We
think the wonder of 2D property input becoming 3D, as
expected by the user, in the range of matching will be
effective for enhancing not only curiosity but also
availability. In this study, we developed the 3D
modeling software "Incompatible BLOCK" with an
interface of such wonders. This paper describes the four
wonders of the interface of Incompatible BLOCK,
introduces the mechanism, and discusses the
usefulness of a wonders-accompanied interface from
user evaluations.

Keywords
3D Modeling, interface, wonder, curiosity

ACM Classification Keywords
[H.5.2]: User Interfaces

Introduction
For interface design, the elements of enhancing user
curiosity as well as intuitiveness and intelligibility are
important. Recent studies of 3D modeling interfaces
propose operational interfaces that provide
intuitiveness and intelligibility by combining user
experiences and impressions [1-3]. Under these

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

Jun Fujiki

Graduate School of DESIGN, Kyushu-University

4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 JAPAN

fujiki@gsd.design.kyushu-u.ac.jp

Taketoshi Ushiama

Faculty School of DESIGN, Kyushu-University

4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 JAPAN

ushiama@design.kyushu-u.ac.jp

Kiyoshi Tomimatsu

Faculty School of DESIGN, Kyushu-University

4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 JAPAN

tomimatsu@design.kyushu-u.ac.jp

 2

circumstances, we incorporate wonders born from the
discrepancy between three dimensions and two
dimensions into the interface to enhance user curiosity.
The wonders of the conversion into three dimensions,
as expected by the user, are projected to make the
interface predictable to some extent. In this study, we
experimentally created the 3D modeling software
"Incompatible BLOCK" with an interface of such
wonders. This paper describes the features of the
Incompatible BLOCK and discusses its effectiveness
from verification-based evaluation results.

Incompatible BLOCK
The Incompatible BLOCK is 3D modeling software that
can generate a form by combining cubes and can draw
lines for the form, floor, and background by a 2D
operation. When modeling with a combination of cubes,
it is difficult to create a precise shape. By applying
techniques such as subdivision [4] and meta-ball [5] to
a created form, however, a highly precise form can be
obtained. This function is not implemented at this stage
but can be added.

figure 1. The screen of Incompatible BLOCK.

Figure 1 shows a screen of the Incompatible BLOCK.
The pens lined on the right side of the screen are tools
to draw lines on the background. On the left side of the
screen are the hand tool for managing a cube, the
rotation tool for rotating the space, and the zoom tool
for zooming the space. The door tool, on the lower left
side, is used to close a session.

Features of the Incompatible BLOCK
The Incompatible BLOCK has four wonders and also an
operational interface that allows results to be predicted
to some extent. The following sections describe the
features and mechanisms.

Feature1: Moving a Cube
If a cube is moved to a screen position on the screen
by dragging, the Incompatible BLOCK judges the
destination and places the cube at the expected
position in 3D space, as described below.

1. If a cube moved onto a 2D floor, the software places
the cube on a 3D floor (Fig. 2a).

2. If a cube is moved to a look-as stacking position on
the screen, it can be placed to be touched other cubes
(Fig. 2b).

3. A cube in empty space is moved vertically or
horizontally from the start position (Fig. 2c).

The destination is judged from the overlapping of the
2D-projected cube to be moved and the 2D-projected
floor or cube already placed. If the 2D cube to be
moved overlaps the 2D floor, Rule 1 applies. The cube
is placed where the vector from the center of the cube
in the direction of view intersects with the floor. If the

 3

2D cube to be moved overlaps the 2D cube already
placed, Rule 2 applies. The position coordinates are
converted into 3D so that the cube will adjoin the
destination cube. If the 2D cube to be moved overlaps
nothing, Rule 3 applies. This resulted from the idea of
floating in air because the floor means the ground while
the empty space means the air. By dragging, the floor
can be moved along the XZ plane.

figure 2. Three cases of moving a cube (top: user view,

bottom: side view).

Feature2: Changing a Cube Height
In addition to Rule 3 above, there are two methods of
changing a cube height. One method uses a "shadow."
A shadow can be pulled out from a cube by dragging
the bottom of the cube down (Fig. 3a). The height of
the cube is changed in the 3D space so that it will look
afloat. As Fig. 3b shows, the cube moves in the
direction of view each time the shadow is moved down.

If a cube is added upward to the bottom of a form
adjacent to the floor, the added cube looks as if it is
under or over the floor. In the real world, however, a

form buried in a floor cannot be seen (Fig. 4a). By
considering this, the Incompatible BLOCK shifts the
whole form up so that the form will be adjacent to the
top of the floor (Fig. 4b).

figure 3. Changing a cube height by using shadow.

figure 4. The upward placement of a cube.

a) on the floor c) in the air b) stacking a cube

a) user view

b) side view

a) user view

b) side view

 4

Feature3: Changing the Number of Cubes by Using
Shadow
You can increase the number of cubes by pulling out
several shadows from a single cube. In the real world,
this can be compared to several building blocks lined in
the direction of view, and the same number of cubes as
shadows can be added to 3D space (Fig. 5). In contrast,
the number of cubes can be reduced by pulling out a
small number of shadows when several cubes are
overlapping and look like one. In other words, the
number of shadows corresponds to the number of
cubes. These are the same as the copy and deletion
functions of existing 3D modeling software. The
existing 3D modeling software uses a menu or icon
selection for switching, while the Incompatible BLOCK
uses the hand tool to handle a cube without switching.

figure 5. Changing the number of cubes by using shadow.

Feature4: Changing a Pen Size
The Incompatible BLOCK enables the user to draw lines
directly on the screen for the cube, floor, or background

by 2D operation. Since lines can be drawn only on the
visible sides, the back of the form shown in Fig. 6 is not
painted. The apparent boldness of a drawn line is fixed,
irrespective of space zooming (Fig. 7a-1, 7b-1). In
other words, zoom-out makes a pen thick (Fig. 7a-2)
and zoom-in makes it thin (Fig. 7b-2).

figure 6. Drawing cubes, the floor and the ground.

figure 7. Changing a pen size.

a) user view

b) side view

a) user view b) other man view c) side view

a-1) zoom-in

a-2) normal zoom

b-1) zoom-out

b-2) normal zoom

 5

Verification and Evaluation
After hearing a brief explanation shorter than one
minute, ten undergraduate and postgraduate students
used the Incompatible BLOCK for verification. By
observing the behaviors of the subjects and having
interviews with them, we evaluated the Incompatible
BLOCK. According to the evaluation results, the
interface having 2D properties was used uniformly
except for changing a cube height by using a shadow,
and object forms could be created in a short time. In
verification by the subjects without hearing the
operational explanation, several but not all subjects
used the function of upward placement. No subjects
used the function of changing a cube height by using a
shadow or changing the number of cubes by using a
shadow. In both verifications, many subjects were
surprised at and pleased with the wonder and
intelligibility of viewing 2D results in 3D during the
operation. During the interviews, they stated that they
had enjoyed themselves. Some of them enjoyed
operating the Incompatible BLOCK for 30 minutes or
more. Figure 8 shows six models produced by using the
Incompatible BLOCK.
Here are some opinions obtained from the subjects

[Affirmative opinions]
- Enjoyable and interesting
- Easy to understand
- Easy to operate
- Not boring
- Feeling wonderful to create a form as intended
- Persuasive even when a cube could not be created at
an intended position
- Completely different concept from that of
conventional 3D graphic software
- Faster input than that in existing 3D graphic software

- Would like to move several building blocks at a time
- Would like not to pull out a shadow but to write own
shadow

[Negative opinions]
- Difficult to adjust a height by using a shadow
- Cube height unknown until turning
- Preferable to always have shadows

figure 8. Six models produced by using Incompatible BLOCK.

 6

Discussion
The function of changing a cube height by using a
shadow was not used much among the subjects who
received the operational explanation. This is probably
because a height increase moves the cube in the
direction of view and the height is difficult to adjust to
an expected position. The upward placement of a cube
also moves a form in the direction of view. The subjects
used this function without a feeling of wrongness,
probably because they wished to create an object form
quickly and did not mind where the form would be
positioned.

The subjects who had not received the operational
explanation did not notice that a shadow could be
pulled out from a cube. The discrepancy from the real
world where a shadow is not touched but produced
from light might have prevented them from making this
association. In addition, several subjects used the
upward placement function but did not notice that the
whole form moved. This is probably because priority is
given to the creation of an object form rather than to
the form position, as mentioned above. The other
subjects might have avoided this function by
considering it unnatural that a cube added by upward
placement was buried in the floor. Under both
conditions, those who had ever used existing 3D
graphic software were surprised by the fact that the
operation, as viewed, produced an expected form.
Many of the received opinions were affirmative, but
negative ones pointed out the issue of height. This will
be a future subject to solve.

Conclusion
In this study, we developed the 3D modeling software
"Incompatible BLOCK" with a wonders-accompanied

interface using 2D properties and evaluated the
software by verification with student users. In the
range of matching in 3D, this software motivates the
user to work easily with the user-expected 3D design.
By verification, we could prove the interface of the
wonders is useful with its intelligibility, input speed, and
entertainment. However, negative opinions were also
received and there are still issues to solve. We will next
seek expressions of more wonders, verify their
effectiveness, and extend their application to other
interface environments.

References
[1] T. Igarashi, S. Matsuoka, H. Tanaka. Teddy: A
Sketching Interface for 3D Freeform Design.
Proceedings of SIGGRAPH'99. ACM Press, (1999), 409-
416.

[2] S. Kasai, S. Hagihara, M. Sano, K. Kusida, K.
Ohshiba, N. Kiyohiro and Y. Sugita. Development of
The Data-Glove for Design-CAD which Embodies a Real
Feeling. 2004.

[3] D. Anderson, J. L. Frankel, J. Marks, A. Agarwala, P.
Beardsley, J. Hodgins, D Leigh, K. Ryall, E. Sullivian
and J. S. Yedidia. Tangible Interaction + Graphical
Interpretation: A New Approach to 3D Modeling.
Proceedings of SIGGRAPH'2000. ACM Press, (2000),
399-402.

[4] L. Kobbelt, √3 subdivision. Proceedings of
SIGGRAPH 2000. ACM Press (2000), 103-112.

[5] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I.
Shirakawa,K. Omura. Object modeling by distribution
function and a method of image generation.
Transactions of the Institute of Electronics and
Communication Engineers of Japan, J68-D(4) ,
Information Processing Society of Japan (1985), 718-
725.

